“I know not with what weapons World War III will be fought, but World War IV will be fought with sticks and stones.” Albert Einstein, in an interview with Alfred Werner, Liberal Judaism 16 (April-May 1949)
“A conventional conflict in the near future will be extremely lethal and fast, and we will not own the stopwatch,” Major General William Hix
This topic is all over the prepper community lately; primarily due to escalating tensions between Russia and the US…or continued tensions between Pakistan and India…or Israel and Iran (a nod of the hat to our national leadership)…or North Korea and everyone. In other words, the climate these days feels very Cold War-ish. So I figured I’d better jump on the band wagon and share some info.
Do you remember basic training? No? Well a small percentage of you will. In the event of a nuclear blast what was our defensive posture? We got in a ditch so the blast could pass over us, or we laid down exposing the lowest possible silhouette with our helmeted heads towards the blast while using our hands to cover our eyes, ears, mouth and nose. In other words, here’s a little confidence right before you die. Oddly enough it was the same protocol we used if faced with a tornado threat while in the field and not near a hardened structure.
The reality is that survivability comes down heavily in terms being in the right place at the right time. As stated above, I’ve been thinking a lot about this as tensions continue to build between the US and Russia; especially now that we are fight proxy wars in locations like Syria. In the news yesterday Putin threatened the US yet again and called for Russian citizens to return to the Mother/Father (depending on which news outlet you got your articles from) Land. He also wants the world to know that Moscow is full of bunkers to save his people if/when a war with the US goes Nuclear. Accordingly, Russian news outlets state that the nation has been hosting national level nuclear training events involving tens of millions. And we in the US are more concerned with political correctness and safe zones.
All that being said, we know that their propaganda machine has been rolling for the last hundred years very effectively, and those that lived through the Cold War are familiar with this kind of talk. So I tend to take Russian news with a grain of salt. What’s alarming is our own lack of preparedness or effective foreign policy at this time; but that’s a whole different issue. I also hope our missile defense sites are fully functional; but that information is paygrades above me that I’ll never see.
If you are curious about your level of risk it’s real easy to hit up google and type US Nuclear Targets; or anything similar. Obviously many of these are speculative; but it gives you a feel for what people are anticipating and predicting. Some of these charts even lay out the potential radioactive fallout spread following detonation. If you are really lucky you might even find some legally declassified cold war target locations floating around on the net. Most survivalist websites/blogs also have maps and information; as there are a lot of prepper types worried about nuclear war.
How many Nuclear Weapons are out there?
Historically the nuclear arms race peeked around 1986 at an estimated 50,000+ globally; primarily Soviet and US (which actually peeked around 1966 at over 31,000 for the US). There are far fewer operational weapons today, but with technology comes the good and bad; because while weapon numbers have decreased significantly, the lethality and yield of current bombs far exceeds those of their Cold War counterparts.
“(Stockholm, 13 June 2016) The Stockholm International Peace Research Institute (SIPRI) today launches its annual nuclear forces data, which highlights the current trends and developments in world nuclear arsenals. The data shows that while the overall number of nuclear weapons in the world continues to decline, none of the nuclear weapon-possessing states are prepared to give up their nuclear arsenals for the foreseeable future.
At the start of 2016 nine states—the United States, Russia, the United Kingdom, France, China, India, Pakistan, Israel and North Korea—possessed approximately 4,120 operationally deployed nuclear weapons. If all nuclear warheads are counted, these states together possessed a total of approximately 15,395 nuclear weapons compared with 15,850 in early 2015 (see table 1).”
The link to the article is below. In short, there are still a lot of weapons out there. Below you will find informative information on the specifics of what happens when a bomb goes off, but let’s begin with survivability so you can read the rest with a small warm fuzzy that you might survive. This information is pulled and quoted directly from other sources, so feel free to check out the links below.
Jon
Nuclear detonation survivability is highly dependent on factors such as if one is indoors or out, the size of the explosion, the proximity to the explosion, and to a lesser degree the direction of the wind carrying fallout. Death is highly likely and radiation poisoning is almost certain if one is caught in the open with no terrain or building masking effects within a radius of 0–3 km from a 1 megaton airburst, and the 50% chance of death from the blast extends out to ~8 km from the same 1 megaton atmospheric explosion.
To highlight the variability in the real world, and the effect that being indoors can make, despite the lethal radiation and blast zone extending well past her position at Hiroshima, Akiko Takakura survived the effects of a 16 kt atomic bomb at a distance of 300 meters from the hypocenter, with only minor injuries, due mainly to her position in the lobby of the Bank of Japan, a reinforced concrete building, at the time. In contrast, the unknown person sitting outside, fully exposed, on the steps of the Sumitomo Bank, next door to the Bank of Japan, received lethal third degree burns and was then likely killed by the blast, in that order, within two seconds.
Effects of nuclear explosions on human health
Some scientists estimate that if there were a nuclear war resulting in 100 Hiroshima-size nuclear explosions on cities, it could cause significant loss of life in the tens of millions from long term climatic effects alone. The climatology hypothesis is that if each city firestorms, a great deal of soot could be thrown up into the atmosphere which could blanket the earth, cutting out sunlight for years on end, causing the disruption of food chains, in what is termed a Nuclear Winter.
The medical effects of the atomic bomb on Hiroshima upon humans can be put into the four categories below, with the effects of larger thermonuclear weapons producing blast and thermal effects so large that there would be a negligible number of survivors close enough to the center of the blast who would experience prompt/acute radiation effects, which were observed after the 16 kiloton yield Hiroshima bomb, due to its relatively low yield:
Initial stage—the first 1–9 weeks, in which are the greatest number of deaths, with 90% due to thermal injury and/or blast effects and 10% due to super-lethal radiation exposure.
Intermediate stage—from 10–12 weeks. The deaths in this period are from ionizing radiation in the median lethal range – LD50
Late period—lasting from 13–20 weeks. This period has some improvement in survivors’ condition.
Delayed period—from 20+ weeks. Characterized by numerous complications, mostly related to healing of thermal and mechanical injuries, and if the individual was exposed to a few hundred to a thousand Millisieverts of radiation, it is coupled with infertility, sub-fertility and blood disorders. Furthermore, ionizing radiation above a dose of around 50-100 Millisievert exposure has been shown to statistically begin increasing one’s chance of dying of cancer sometime in their lifetime over the normal unexposed rate of ~25%, in the long term, a heightened rate of cancer, proportional to the dose received, would begin to be observed after ~5+ years, with lesser problems such as eye cataracts and other more minor effects in other organs and tissue also being observed over the long term.
Fallout exposure – Depending on if further afield individuals Shelter in place or evacuate perpendicular to the direction of the wind, and therefore avoid contact with the fallout plume, and stay there for the days and weeks after the nuclear explosion, their exposure to fallout, and therefore their total dose, will vary. With those who do shelter in place, and or evacuate, experiencing a total dose that would be negligible in comparison to someone who just went about their life as normal.
Staying indoors until after the most hazardous fallout isotope, I-131 decays away to 0.1% of its initial quantity after ten half lifes – which is represented by 80 days in I-131s case, would make the difference between likely contracting Thyroid cancer or escaping completely from this substance depending on the actions of the individual.
The energy released from a nuclear weapon detonated in the troposphere can be divided into four basic categories:
- Blast—40–50% of total energy.
- Thermal radiation—30–50% of total energy.
- Ionizing radiation—5% of total energy (more in a neutron bomb)
- Residual radiation—5–10% of total energy with the mass of the explosion.
Depending on the design of the weapon and the environment in which it is detonated the energy distributed to these categories can be increased or decreased. The blast effect is created by the coupling of immense amounts of energy, spanning the electromagnetic spectrum, with the surroundings. Locations such as submarine, surface, air burst, or exo-atmospheric determine how much energy is produced as blast and how much as radiation. In general, denser media around the bomb, like water, absorb more energy, and create more powerful shockwaves while at the same time limiting the area of its effect.
When an air burst occurs, lethal blast and thermal effects proportionally scale much more rapidly than lethal radiation effects, as higher and higher yield nuclear weapons are used.
The physical-damage mechanisms of a nuclear weapon (blast and thermal radiation) are identical to those of conventional explosives, but the energy produced by a nuclear explosive is millions of times more powerful per gram and the temperatures reached are briefly in the tens of millions of degrees.
Energy from a nuclear explosive is initially released in several forms of penetrating radiation. When there is a surrounding material such as air, rock, or water, this radiation interacts with and rapidly heats it to an equilibrium temperature (i.e. so that the matter is at the same temperature as the atomic bomb’s matter). This causes vaporization of surrounding material resulting in its rapid expansion. Kinetic energy created by this expansion contributes to the formation of a shockwave. When a nuclear detonation occurs in air near sea level, much of the released energy interacts with the atmosphere and creates a shockwave which expands spherically from the hypocenter. Intense thermal radiation at the hypocenter forms a nuclear fireball and if the burst is low enough, it is often associated with a mushroom cloud. In a burst at high altitude, where the air density is low, more energy is released as ionizing gamma radiation and x-rays than an atmosphere-displacing shockwave.
In 1942 there was some initial speculation among the scientists developing the first nuclear weapons that there might be a possibility of igniting the Earth’s atmosphere with a large enough nuclear explosion. This would concern a nuclear reaction of two nitrogen atoms forming a carbon and an oxygen atom, with release of energy. This energy would heat up the remaining nitrogen enough to keep the reaction going until all nitrogen atoms were consumed. Hans Bethe was assigned the task of studying whether there was a possibility in the very early days, and concluded there was no possibility due to inverse Compton Effect cooling of the fireball. Richard Hamming, a mathematician, was asked to make a similar calculation just before Trinity, with the same result. Nevertheless, the notion has persisted as a rumor for many years, and was the source of black humor at the Trinity test
Blast Damage
The high temperatures and radiation cause gas to move outward radially in a thin, dense shell called “the hydrodynamic front”. The front acts like a piston that pushes against and compresses the surrounding medium to make a spherically expanding shock wave. At first, this shock wave is inside the surface of the developing fireball, which is created in a volume of air heated by the explosion’s “soft” X-rays. Within a fraction of a second the dense shock front obscures the fireball, and continues to move past it, now expanding outwards, free from the fireball, causing the characteristic double pulse of light seen from a nuclear detonation, with the dip causing the double pulse due to the shock wave–fireball interaction. It is this unique feature of nuclear explosions that is exploited when verifying that an atmospheric nuclear explosion has occurred and not simply a large conventional explosion, with radiometer instruments known as Bhangmeters capable of determining the nature of explosions.
For air bursts at or near sea-level, 50–60% of the explosion’s energy goes into the blast wave, depending on the size and the yield of the bomb. As a general rule, the blast fraction is higher for low yield weapons. Furthermore, it decreases at high altitudes because there is less air mass to absorb radiation energy and convert it into blast. This effect is most important for altitudes above 30 km, corresponding to <1 per cent of sea-level air density.
The effects of a moderate rain storm during an Operation Castle nuclear explosion was found to dampen, or reduce, peak pressure levels by approximately 15% at all ranges.
Much of the destruction caused by a nuclear explosion is due to blast effects. Most buildings, except reinforced or blast-resistant structures, will suffer moderate damage when subjected to overpressures of only 35.5 kilopascals (kPa) (5.15 pounds-force per square inch or 0.35 atm). Data obtained from the Japanese surveys found that 8 psi (55 kPa) was sufficient to destroy all wooden and brick residential structures. This can reasonably be defined as the pressure capable of producing severe damage.
The blast wind at sea level may exceed one thousand km/h, or ~300 m/s, approaching the speed of sound in air. The range for blast effects increases with the explosive yield of the weapon and also depends on the burst altitude. Contrary to what one might expect from geometry, the blast range is not maximal for surface or low altitude blasts but increases with altitude up to an “optimum burst altitude” and then decreases rapidly for higher altitudes. This is due to the nonlinear behaviour of shock waves. When the blast wave from an air burst reaches the ground it is reflected. Below a certain reflection angle the reflected wave and the direct wave merge and form a reinforced horizontal wave, this is known as the ‘Mach stem’ (named after Ernst Mach) and is a form of constructive interference.
For each goal overpressure there is a certain optimum burst height at which the blast range is maximized over ground targets. In a typical air burst, where the blast range is maximized to produce the greatest range of severe damage, i.e. the greatest range that ~10 psi (69 kPa) of pressure is extended over, is a GR/ground range of 0.4 km for 1 kiloton (kt) of TNT yield; 1.9 km for 100 kt; and 8.6 km for 10 megatons (Mt) of TNT. The optimum height of burst to maximize this desired severe ground range destruction for a 1 kt bomb is 0.22 km; for 100 kt, 1 km; and for 10 Mt, 4.7 km.
Two distinct, simultaneous phenomena are associated with the blast wave in air:
- Static overpressure, i.e., the sharp increase in pressure exerted by the shock wave. The overpressure at any given point is directly proportional to the density of the air in the wave.
- Dynamic pressures, i.e., drag exerted by the blast winds required to form the blast wave. These winds push, tumble and tear objects.
Most of the material damage caused by a nuclear air burst is caused by a combination of the high static overpressures and the blast winds. The long compression of the blast wave weakens structures, which are then torn apart by the blast winds. The compression, vacuum and drag phases together may last several seconds or longer, and exert forces many times greater than the strongest hurricane.
Acting on the human body, the shock waves cause pressure waves through the tissues. These waves mostly damage junctions between tissues of different densities (bone and muscle) or the interface between tissue and air. Lungs and the abdominal cavity, which contain air, are particularly injured. The damage causes severe hemorrhaging or air embolisms, either of which can be rapidly fatal. The overpressure estimated to damage lungs is about 70 kPa. Some eardrums would probably rupture around 22 kPa (0.2 atm) and half would rupture between 90 and 130 kPa (0.9 to 1.2 atm).
Blast winds: The drag energies of the blast winds are proportional to the cubes of their velocities multiplied by the durations. These winds may reach several hundred kilometers per hour.
Thermal Radiation
Nuclear weapons emit large amounts of thermal radiation as visible, infrared, and ultraviolet light, to which the atmosphere is largely transparent. This is known as “Flash”. The chief hazards are burns and eye injuries. On clear days, these injuries can occur well beyond blast ranges, depending on weapon yield. Fires may also be started by the initial thermal radiation, but the following high winds due to the blast wave may put out almost all such fires, unless the yield is very high, where the range of thermal effects vastly out ranges blast effects, as observed from explosions in the multi-megaton range. This is because the intensity of the blast effects drops off with the third power of distance from the explosion, while the intensity of radiation effects drops off with the second power of distance. This results in the range of thermal effects increasing markedly more than blast range as higher and higher device yields are detonated. Thermal radiation accounts for between 35-45% of the energy released in the explosion, depending on the yield of the device. In urban areas, the extinguishing of fires ignited by thermal radiation may matter little, as in a surprise attack fires may also be started by blast-effect-induced electrical shorts, gas pilot lights, overturned stoves, and other ignition sources, as was the case in the breakfast-time bombing of Hiroshima. Whether or not these secondary fires will in turn themselves be snuffed out as modern noncombustible brick and concrete buildings collapse in on themselves from the same blast wave is uncertain, not least of which, because of the masking effect of modern city landscapes on thermal and blast transmission are continually examined. When combustible frame buildings were blown down in Hiroshima and Nagasaki, they did not burn as rapidly as they would have done had they remained standing. The noncombustible debris produced by the blast frequently covered and prevented the burning of combustible material. Fire experts suggest that unlike Hiroshima, due to the nature of modern U.S. city design and construction, a firestorm in modern times is unlikely after a nuclear detonation. This does not exclude fires from being started, but means that these fires will not form into a firestorm, due largely to the differences between modern building materials and that used in World War II era Hiroshima.
There are two types of eye injuries from the thermal radiation of a weapon:
Flash blindness is caused by the initial brilliant flash of light produced by the nuclear detonation. More light energy is received on the retina than can be tolerated, but less than is required for irreversible injury. The retina is particularly susceptible to visible and short wavelength infrared light, since this part of the electromagnetic spectrum is focused by the lens on the retina. The result is bleaching of the visual pigments and temporary blindness for up to 40 minutes.
A retinal burn resulting in permanent damage from scarring is also caused by the concentration of direct thermal energy on the retina by the lens. It will occur only when the fireball is actually in the individual’s field of vision and would be a relatively uncommon injury. Retinal burns may be sustained at considerable distances from the explosion. The height of burst, and apparent size of the fireball, a function of yield and range will determine the degree and extent of retinal scarring. A scar in the central visual field would be more debilitating. Generally, a limited visual field defect, which will be barely noticeable, is all that is likely to occur.
When thermal radiation strikes an object, part will be reflected, part transmitted, and the rest absorbed. The fraction that is absorbed depends on the nature and color of the material. A thin material may transmit a lot. A light colored object may reflect much of the incident radiation and thus escape damage, like anti-flash white paint. The absorbed thermal radiation raises the temperature of the surface and results in scorching, charring, and burning of wood, paper, fabrics, etc. If the material is a poor thermal conductor, the heat is confined to the surface of the material.
Actual ignition of materials depends on how long the thermal pulse lasts and the thickness and moisture content of the target. Near ground zero where the energy flux exceeds 125 J/cm2, what can burn, will. Farther away, only the most easily ignited materials will flame. Incendiary effects are compounded by secondary fires started by the blast wave effects such as from upset stoves and furnaces.
In Hiroshima on August 6, 1945, a tremendous firestorm developed within 20 minutes after detonation and destroyed many more buildings and homes, built out of predominantly ‘flimsy’ wooden materials. A firestorm has gale-force winds blowing in towards the center of the fire from all points of the compass. It is not peculiar to nuclear explosions, having been observed frequently in large forest fires and following incendiary raids during World War II. Despite fires destroying a large area of the city of Nagasaki, no true firestorm occurred in the city, even though a higher yielding weapon was used. Many factors explain this seeming contradiction, including a different time of bombing than Hiroshima, terrain, and crucially, a lower fuel loading/fuel density in the city than that of Hiroshima.
Nagasaki probably did not furnish sufficient fuel for the development of a fire storm as compared to the many buildings on the flat terrain at Hiroshima.
As thermal radiation travels, more or less, in a straight line from the fireball (unless scattered) any opaque object will produce a protective shadow that provides protection from the flash burn. Depending on the properties of the underlying surface material, the exposed area outside the protective shadow will be either burnt to a darker color, such as charring wood, or a brighter color, such as asphalt. If such a weather phenomenon as fog or haze is present at the point of the nuclear explosion, it scatters the flash, with radiant energy then reaching burn sensitive substances from all directions. Under these conditions, opaque objects are therefore less effective than they would otherwise be without scattering, as they demonstrate maximum shadowing effect in an environment of perfect visibility and therefore zero scattering. Similar to a foggy or overcast day, although there are few, if any, shadows produced by the sun on such a day, the solar energy that reaches the ground from the sun’s infrared rays is nevertheless considerably diminished, due to it being absorbed by the water of the clouds and the energy also being scattered back into space. Analogously, so too is the intensity at range of burning flash energy attenuated, in units of J/cm2, along the slant/horizontal range of a nuclear explosion, during fog or haze conditions. So despite any object that casts a shadow being rendered ineffective as a shield from the flash by fog or haze, due to scattering, the fog fills the same protective role, but generally only at the ranges that survival in the open is just a matter of being protected from the explosion’s flash energy
The thermal pulse also is responsible for warming the atmospheric nitrogen close to the bomb, and causing the creation of atmospheric NOx smog components. This, as part of the mushroom cloud, is shot into the stratosphere where it is responsible for dissociating ozone there, in exactly the same way as combustion NOx compounds do. The amount created depends on the yield of the explosion and the blast’s environment. Studies done on the total effect of nuclear blasts on the ozone layer have been at least tentatively exonerating after initial discouraging findings.
Indirect Effects
Electromagnetic pulse
Gamma rays from a nuclear explosion produce high energy electrons through Compton Scattering. For high altitude nuclear explosions, these electrons are captured in the Earth’s magnetic field at altitudes between twenty and forty kilometers where they interact with the Earth’s magnetic field to produce a coherent nuclear electromagnetic pulse (NEMP) which lasts about one millisecond. Secondary effects may last for more than a second.
The pulse is powerful enough to cause moderately long metal objects (such as cables) to act as antennas and generate high voltages due to interactions with the electromagnetic pulse. These voltages can destroy unshielded electronics. There are no known biological effects of EMP. The ionized air also disrupts radio traffic that would normally bounce off the ionosphere.
Electronics can be shielded by wrapping them completely in conductive material such as metal foil; the effectiveness of the shielding may be less than perfect. Proper shielding is a complex subject due to the large number of variables involved. Semiconductors, especially integrated circuits, are extremely susceptible to the effects of EMP due to the close proximity of the PN junctions, but this is not the case with thermionic tubes (or valves) which are relatively immune to EMP. A Faraday cage does not offer protection from the effects of EMP unless the mesh is designed to have holes no bigger than the smallest wavelength emitted from a nuclear explosion.
Large nuclear weapons detonated at high-altitudes also cause geomagnetically induced current in very long electrical conductors. The mechanism by which these geomagnetically induced currents are generated is entirely different from the gamma ray induced pulse produced by Compton electrons.
Radar blackout
The heat of the explosion causes air in the vicinity to become ionized, creating the fireball. The free electrons in the fireball affect radio waves, especially at lower frequencies. This causes a large area of the sky to become opaque to radar, especially those operating in the VHF and UHF frequencies, which is common for long-range early warning radars. The effect is less for higher frequencies in the microwave region, as well as lasting a shorter time – the effect falls off both in strength and the effected frequencies as the fireball cools and the electrons begin to re-form onto free nuclei.
A second blackout effect is caused by the emission of beta particles from the fission products. These can travel long distances, following the Earth’s magnetic field lines. When they reach the upper atmosphere they cause ionization similar to the fireball, but over a wider area. Calculations demonstrate that one megaton of fission, typical of a two megaton H-bomb, will create enough beta radiation to black out an area 400 kilometres (250 mi) across for five minutes. Careful selection of the burst altitudes and locations can produce an extremely effective radar-blanking effect.
The physical effects giving rise to blackout are those that also cause EMP, which itself can cause power blackouts. The two effects are otherwise unrelated, and the similar naming can be confusing.
Ionizing radiation
About 5% of the energy released in a nuclear air burst is in the form of ionizing radiation: neutrons, gamma rays, alpha particles and electrons moving at speeds up to the speed of light. Gamma rays are high energy electromagnetic radiation; the others are particles that move slower than light. The neutrons result almost exclusively from the fission and fusion reactions, while the initial gamma radiation includes that arising from these reactions as well as that resulting from the decay of short-lived fission products.
The intensity of initial nuclear radiation decreases rapidly with distance from the point of burst because the radiation spreads over a larger area as it travels away from the explosion (the inverse-square law). It is also reduced by atmospheric absorption and scattering.
The character of the radiation received at a given location also varies with distance from the explosion. Near the point of the explosion, the neutron intensity is greater than the gamma intensity, but with increasing distance the neutron-gamma ratio decreases. Ultimately, the neutron component of initial radiation becomes negligible in comparison with the gamma component. The range for significant levels of initial radiation does not increase markedly with weapon yield and, as a result, the initial radiation becomes less of a hazard with increasing yield. With larger weapons, above 50 kt (200 TJ), blast and thermal effects are so much greater in importance that prompt radiation effects can be ignored.
The neutron radiation serves to transmute the surrounding matter, often rendering it radioactive. When added to the dust of radioactive material released by the bomb itself, a large amount of radioactive material is released into the environment. This form of radioactive contamination is known as nuclear fallout and poses the primary risk of exposure to ionizing radiation for a large nuclear weapon.
Details of nuclear weapon design also affect neutron emission: the gun-type assembly Hiroshima bomb leaked far more neutrons than the implosion type 21 kt Nagasaki bomb because the light hydrogen nuclei (protons) predominating in the exploded TNT molecules (surrounding the core of the Nagasaki bomb) slowed down neutrons very efficiently while the heavier iron atoms in the steel nose forging of the Hiroshima bomb scattered neutrons without absorbing much neutron energy.
It was found in early experimentation that normally most of the neutrons released in the cascading chain reaction of the fission bomb are absorbed by the bomb case. Building a bomb case of materials which transmitted rather than absorbed the neutrons could make the bomb more intensely lethal to humans from prompt neutron radiation. This is one of the features used in the development of the neutron bomb.
Nuclear Winter
Nuclear winter (also known as atomic winter) is a hypothesized global climatic effect most often considered a potential threat following a countervalue (or city-targeted), nuclear war, as a result of city and natural wildfire firestorms. It is most frequently suggested to manifest as a result of the combined combustion pollution from the burning of at least 100 city sized areas at firestorm-intensity. The term was specifically coined to refer to computer model results where this smoke remained in the air for years, or even decades, and during this time it causes massive planet-wide temperature drops (“winters”).
The climate models in the public domain suggest that the ignition of 100 firestorms, comparable in intensity to that observed in Hiroshima in 1945, would produce a “small” nuclear winter. The burning of these firestorms would result in the injection of soot (specifically black carbon) into the Earth’s stratosphere, producing an anti-greenhouse effect that lowers the Earth’s surface temperature. The models conclude that the cumulative products of 100 of these firestorms would unmistakably cool the global climate by approximately 1 °C (1.8 °F), largely eliminating the magnitude of anthropogenic global warming for two to three years. The authors speculate, but do not model, that this would have global agricultural losses as a consequence.
A much larger number of firestorms, however, was the initial assumption of the computer modelers that coined the term in the 1980s. These were speculated to be a result of any large scale employment of countervalue city-airbursting nuclear weapon use during an American-Soviet total war. This larger number of firestorms, which are not, in of themselves modeled, are presented as causing nuclear winter conditions as a result of the smoke inputted into various climate models, with the depths of severe cooling lasting for as long as a decade, summer drops in average temperature by about 20 °C (36 °F) in core agricultural regions of the US, Europe, and China, and by as much as 35 °C (63 °F) in Russia. This cooling was produced due to a 99% reduction in the natural solar radiation reaching the surface of the planet in the first few years, gradually clearing over several decades.
As nuclear devices need not be involved in the ignition of a firestorm, the term is a common misnomer. This is due to, in greatest part, the vast majority of published papers stating, without qualitative justification, that nuclear explosions are the cause of the modeled firestorm effects. The only phenomenon that is scrutinized and computer modeled in the nuclear winter papers is the climate forcing agent of firestorm-soot, a product which can be ignited and formed by a myriad of other, more common, means.
On the fundamental level, it is known that firestorms can inject soot smoke/aerosols into the stratosphere, as each natural occurrence of a wildfire firestorm has been found to “surprisingly frequently” produce minor “nuclear winter” effects, with short-lived, almost immeasurable drops in surface temperatures, confined to the global hemisphere that they burned in. This is somewhat analogous to the frequent volcanic eruptions that inject sulfates into the stratosphere and thereby produce minor, even negligible, volcanic winter effects.
A suite of satellite and aircraft-based firestorm-soot-monitoring instruments are at the forefront of attempts to accurately determine the lifespan, quantity, injection height, and optical properties of this smoke. Information regarding all of these properties is necessary to truly ascertain the length and depth of the cooling effect of firestorms, independent of the nuclear winter computer model projections.
Presently, from satellite tracking data, stratospheric smoke aerosols are removed in a time span under approximately two months. The existence of any hint of a tipping point into a new stratospheric condition where the aerosols would not be removed within this time frame remains to be determined.
https://en.wikipedia.org/wiki/Effects_of_nuclear_explosions
https://en.wikipedia.org/wiki/Nuclear_weapon
https://www.sipri.org/media/press-release/2016/global-nuclear-weapons-downsizing-modernizing
https://en.wikipedia.org/wiki/Historical_nuclear_weapons_stockpiles_and_nuclear_tests_by_country
https://en.wikiquote.org/wiki/World_War_III
https://en.wikipedia.org/wiki/Nuclear_winter
“Super EMP” Capable of Disabling Power Grid Across Lower 48 States
Leave a Reply